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I. Phys A Math. Gen M (1991) 5291-5297. Pnnted m the UK 

1.  tion on 

This study has been devoted to wmputatioa of eigenvalues is the three-dimensionai 
case by using a pemtrbative method for the fekivWig perturbed Hamiltonians: 

There zre a variety of techn:rjues whicb have been employed bo calculate and to 
investigate the one-dimtilsional potential 

The potential given by equation (3) has recesly been studied by many axt?!w 
asing diiierent techniques. Mitra (1945) calculated the ground state and fiist two excited 
sttttes using the Rilz variational method in combination with a Givens-Householder 
matrix eigenvalue algorifltm. Galicia and Killingbeck (1979) used the finite-digerence 
method io compute the energy eigenvalues for the three lowest even-parity states. 
&"a1 (1979) ha5 obLaiPled the asymptolic expansions For the eigenenergies and 
eigenfunciions Fo: the potential by expanding the factor 1/(1 igx') as a power series 
in gx', which is valid for low values of g ( g 6  2) .  Bessis and Sessis (1980) haire studied 
the same problem by taking advantage of a two-parameter ( A  and g )  scale transfoma- 
LIULI. ~SCUIUL I L ~ O A I  ti- YSCU il r m ~  utjiriuiiiliiii L I L S I ~ V U  i0 silisuiilic ~ ~ 1 5 :  cwss~y 
eigenvahies A set of exact solutions has b e p  found by Elessas (i9Si) under the 
conditions h C O  and A = Ah(g). Lai an6 Lin (3982) have applied the Aeilmana-Feynman 
and hypemirial theorem and used Bad6 approximants to czlmla~c the energy &sen- 
value3 from the perturbation series. 'wnitehead et al (1992) have proved the existen? 
ofa  class of cxaz eigenvalues, when cerhin algebliiic relatiow beween h ana g ho!d. 
Fack and Vaiiden Berghe 11985) used ihe Gnite-di@erence method in combinatiaq pi@ 
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matrix diagonalization for a numerical computation. Fack et nl (1986) applied an 
operator method based upon the SO( 1,2) dynamic group and gave very accurate results 
for different values of A and g (0.1 < A S  100, 0.1 G g S  10) and state number. We wish 
to draw attention to the fact that the dynamic group technique did not work well at 
iarger values of g. Hodgson (1988) has applied an analytic continuation technique 
with a Taylor series to produce eigenvalues for wide ranges of perturbation parameters 
(0.1 s g. A S  10') and state number n, and obtained res-clts with very high accuracy. 
Witwit (1989) has used many numerical approaches, both perturbative and non- 
perturbative, for varions eigenstates and for different values of A and g, and obtained 
results with good accuracy. The interest in this :ype of potential arises in several areas 
and these have been summarized by Mitra (1978) and busha1 (1979). In particular, 
this type of potential occurs when considering models iii laser theory. The potential 
descilbed by Hamiltonian (2) for the one-dimensional case 

does not seem to have been widely studied; there are few references in the literature 
dealiug with this type @f potential. The potential described by equation (4) has heen 
studied malytically by Auberson ilBS2), who ha5 shown that the periirhation 
expansion ofeigenvaiues E, in terms of g at fixed a, is Bore1 summable. Also, Auberson 
and Boisskre (!?83) inves!ig@tx! ena!ytie$!y znd r???meri.d?y tht. SEEP pnte~?ia!; they 
caiculated ground ET3Le energy levels for a large range of value3 of (U and g by using 
many methods such a2 Fad&, Bore!-Pad&, an improved Borel-Pad6 and Bore1 mapping. 
messas (1584) has investigzed the szme poteiitiial, a~nd shown that there exists a cfau 
of exact eigenvalues and eigenfunctions when certain algebraic relations between g 
and LI hold (g>O, a>O). 

However, as far PS we know the other potentials given by equations (1) and (2) 
heve not been studied trr the same extent, except the potential given by equarion (1) 
which has been studied by Varsbni (1987) by using a I /N expansion technique to 
calculate the energy eigenvalues for many eigenstates for the parameters ranges 0s %= 
4, Os164 (h,g=0.\-1000). Also, Roy ef ai (1988) applied the same technique to 
calculate eigenvahes for various states wirh diEerent vzlues of perhirbation parameters. 

In the prmest work we have applied h e  Helimann-Fcynman and hypervirial 
theorems to calculate the perturbation series. T'hz perturbation series does not converge 
for any arbitrary values of A 2nd g (our method depends cn the ranges of A and g 
( g / A < <  1 or g?G 1) if it is used EO give resuits with good accuracy, 2s we will see later. 
Due to this setback ille used the finite-digerence method to calculate the energy 
eigenvalues for wide ranges of penurbation parameters (0.1 S gG IO', 0.1 S h S IO3) 
and higher powers of the indices fnor pertwbation (Ax2N/(l+gx2), Z s ' N s 2 0 )  (See 
WitwIt 1983). We also used the Pad6 approxiimmts to the energy series, which was 
.*..-:-.> r &I^ 71-11 _.̂ I_ r" ..__I- IL ̂^_^- "..A *La L.,.-".",:A", rlralrmm i" nrAnr 
OVLLilneO LlVII, L'lG n;;un,inn,-ri-y,lrllnir Lllcvlrlll *.%U L l l r  L'ypJ" "11.11 L Y l Y ' l l "  1.1 ".U"' 

to imprave the convergence of the perturbation series. 
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The perturbation calculation for the potential V ( r )  = h;'/(t + gr2) is made by 

rvaries(O~rr+m),thefunctionf(r)=l/(l+grZ)Nnsfrom l t o  O,f(rJbeingalways 
non-negative. For large values of g, the perturbing pctential is almost entirely concen- 
tratednearr=O. Thepote~tiaisinequations(1)and (2)can beexpressedasexpansions: 

V ( r ) =  rz+l (I+i )r - '+h V,gmrz'"'+" 16) 

expanding the factor 1/(1 -k gr') as a power series in gr' which is valid for gr'- C 1 . h  

m 

n = o  

where 
v ,  = (-1y". (8) 

The coefficient given by equation (8) alternates in sign, the coefficient takes a + 
sign for even m valses; ar,d a - sign for odd m values. We have expanded the potentials 
given by equations (6) and (7) to the limit begoad which any tsm. makes nc difference 
to our eigenvalues. For our calculations this limit was reached for m = 20. The ssries 
in equations (6) and (7) are valid only for gr2< 1 and g a r ' s  1, respedvely. I f  we 
apply the hypervirial reiatiou given by Killingbeck (1985) in the fcrm 

(9) 
N 
2 

2 E ( N +  l ) ( r N )  =E V,,(ZN+ m+2)(rN+'"-- (A'- l)(?'") 

and the Hellmann-Feynman theorem in the form 

and use the petntrbation expansion 
E =z E(I)A' (11) 

(P)=z: A(N, M)A" (12) 
to the potentials given by equations (6) and (7), we obtain the Foilowing recurrence 
relations corresponding to potentials (6) aild (Y), respectively, aftcr some aigeixa: 

id 
( 2 ~ + 2 )  E ( I ) B ( M ,  M - r )  

U 

=ZNfl(l+l)-f(N2- l ) ] B ( N  -2, M ) + ( h  + i)(2N+ 4 ) B ( N + 2 ,  M ;  
m 

+ I: Ir,;2N+2m+.$)S(Fi+2m+2,FA-nr-1) (13) 

( M + I ) E ( M +  1) = I: V,(m+l)B(2m+2,  M - m )  ( 1 4  

m 10 

m 

m - O  

M 
(2N+2)L:  E ( I ) B ( M M - I )  

0 

= N[l( l+ 1)-4(M2-1)]B(N-2, M ) + ( N i 2 ) B ( N + 2 ,  M )  
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The energy of the nth unperturbed state can be written for the noteniial gven by 
equation (6) as 

~ ( 0 )  = (2n + 3 ) L G i  (171 
and for the potential given by equation (7) as 

E ( O ) = ( 2 n + 3 )  (18) 

n=2n,+l  (19)  

where n is the principal quantum number, which can be expressed as 

where n, is called the radial quantum number and I ?he angular momentum, n 1s seen 
to be even or odd according to whether I is even or odd. Relations (23)-(16) and E(Oj 
with coefficient B(0,O) = 1 allow US to compute the energies for different values of 
angular momentum and state number n. The perturbation series converges and gives 
satisfactory numerical results when certain relations between A and g hold (g/,t<< l), 
as vie mentioned in the introduc?ion. 

3. The Pad4 approximarst caleulabion of energy e&emvahes 

The Bad6 approximants are a particular type ofratio~ial Fraction approximation to the 
value of a function, and the Pad6 approximation is a usefiil technique when the 
yuvergence of a series is unacceptably slow or even non-existent. The Pad6 
approximant is in the form of one polynomia! divided by another. This technique 
provides us with a practical method of calculating results from the energ;. series E f n ) ,  
since ita use frerequenily accelerates convergence. The E [ M ,  NI Pad6 approximanrs to 
the energy series are given by 

- E ( O ) + E ( l ) A + S ( 2 ) ~ ? + . .  +E(N+M)h“lN (21) 

v,ith bo defined io bk unity. The coefficients Q, ( i  = 1, . . . , N) and b, (i = 0, . . . . M) in 
the numerator and denominator are calculated from knowledge of 
E ( i ) :  E ( 2 ) ,  . . . , E ( M +  N)* which can be computed from the hyperviriai relations. 
Our calculated energy values Ea used the [M, NI Pad6 approximanis to the energy 
series for ihe ground aird the first three excited states. However, the results of the 
hypemirial merhod i.3n be much improved by usin8 the Pad6 approximant method, 
particularly when z/A = 1 I in which range the hypemirial method does not give reliable 
caiciilation of the energy E,. 

4. R e o h  stad ~ ~ E C S $ Q S & ~  

Our aim irk this section i s  to investigate m d  to discuss the results for the energy 
eigenvalues of the potentials given by equations (1) 2nd ( 2 ) .  Our aim is also to push 
the numerical analysis as far as possible, and in this respect we go further than Varshni 
(i98?) and Roy eial(1988) in ouranalysis, by usiag kigh values of angular momenrum 
( I =  I, 2, 3, 5, IQ, 20) and being able to handle higher index powcrs of perturbation 
“ g r ( / (  1 + gar2). 
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The present work is intended to poin: out one feature which has nor been nosed 
in previous problems, ss discussed by Witwit (1989). The hypemirial method can 
produce good accuracy even without use of the renormalization parameter iiz which 
usually plays an important role in obtaining convergent perturbation seriez. We have 
computed the first four energy eigenvalues by using the hypervirial method for the 
potential given by equation (l), with parameter vaines 0.1 S g S 0.5, 200 SAS IO4 and 
angular momentum I = 5, 10, 10; the results are listed ip, table 1. The results are in 
good agreement with those calmlated by Witwit (1989) by using the power sedes 
method. This agreement provides a check on the accuracy of our results. Also, we 
checked the energies for the special c2se g=O; therefore, the potential? given by 
equations (1) and ( 2 )  take the forms r2+ I ( l+ l ) r -2+Ar ' ,  r2+ii/2)(i-t I ) P - ~ + ~ P ' ,  
res?ectively, which are regarded as ordinary anhamionic oscillators in three dimensions. 
The test energies were obtained very easily from power series or renormalized series 
methods described by Witwit (1989). 

We also list in tabk 21' the first four energy eigenvalues for the potential given by 
equation (1) obtained using the Pad6 approximant E [ 6 , 6 ]  for the values 0.1 S g G 5 ,  
0.1 s A S lOOa snd i = i-3. -We can say t h a  the accuracy of our results iisted in table 
2 is very good in comparison witb the results of Varshill(1989) and Roy et al (&88) ,  
which are the only ones available in the literature to the best of our knowledge. To 
compare the energy eigenvalues of our calculations with the results of Varshni's work, 
it is necessary tc mnlliply his results by 2,  since he used -iVz in the Hamiltonian. 
We wish to draw attention to the fact that the present Pad6 approximaat approach 
work very well even for higher values of g (0.1 S 00 6 5) 2nd A (0.1 SA. S IQ3), where- 
as the Pad& approximant method of Lai and iin (1982) is restricted to low values of 
g ( g S 2 ) .  For the validity of our ~esultt it is essential that the reiation between g 
and A holds ( g / h < <  I), due to the condition imposed onthe expansion ofthe polentiais 

In table 3 we present the 6rst nine cneriy levels for potential ( I )  for different values 
of A and g (A = O.l-!QOO. g = 0.1-1); our results have been compared with the previous 
resuits of Varshni (1987) and the agreement betvieen the resslts is very good. For large 
s and small h it is found that the hypenririal method underestimates the eigenenergies 
because it violates the condition g / h  (< 1, which imposes on the ex9ansion given by 
potential (6).  Therefore, we restncted out calcuktion to a rather smali range of g and 
a large mnge of A. 

Also, we have calculated the first five energ] eigenvalues for the potential given by 
equa~tioii (2) by using the hyperviririai method for diEerent seis of i0F s g 6 5 x IO=>, 
0.25s a S 10 and 1 S IS 10. The rsmlts are given in tables 4 and 5.  However, the 
hypeNina1 method works very well and gives results of good accuracy. We have 
performed various numerical check on the obtained energy eigenvalues for potential 
(2), e.g. for these vaioes at I =  --1 ana i = 0 the probiem reduces KO a one-dimensional 
problem and our ressl3ii 3gi-e~ with those obtained by Auberson and Boissiere (1983) 
in the one-dimensionai case. in this paper, we would like to point out that there exists 
another set of exact soiutions to the Schrodinger equation from potential (d), which 
hm been obtained by Fleesas (1984)- 

. (6)  and (7). 

- 

E = 5 0 1 - ' m - g - ' e - 2  (27.1 
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$=0.1,X=500,6=5 N g=0.l,ks1000,E=10 N 

371.220429074117 9 528.5360761160119 9 
455.147483320689 11 649.4547569735891 8 
537.920332236231 11 769.2050328634557 8 

1 

Tnbie 1. E~pmvaIues of H = P ' i  r2+ l l r+  l )%+A?/(I  +& forthe first fourenergyievels 
obtained usrng the hyperviriai method. 
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where 

g = ( ~ ~ 3 ) - ' [ 4 ~ ~  + 5  -2(2(2awz+3)(Uo'+ (23)  

Equation (23) yields real and positive a-values if g is fixed and solved for a; at w = 1, 
g=O.5, the real a-value lies between the Limits 4 s  or G5. It is interesting to compare 
our results with the exact one given by equation (22). At w = 1, g = 0.5 and a = 4. 
Equation (22) gives E'= 5.465 169 9;  our method h r  g = 2, U = 10, w = 1, n = 2 yielded 
E' = 5.464 870 4. As can be seen, both values are approximately the same. 

If we take ga as the perturbation parameter instead of g: it does not meke any 
difference to the accuracy of our caiculations. Also, we have not observed any funda- 
mental difference in beha-riour between the V- and Vf cases as yle vary the perturbation 
parameters a, g and I 

The Pad6 approximant method [M, NI has been applied to eigenvalues for the 
case V+ to different sets of parameters (0.01 S g S Q.2,2== CI S 50,1< ! s 4), and results 
for the ground state are given in Iable 6. The accuracy decreases as g and U increzse, 
as is clear from our results in tables 4-6 The present calculations in table 6 have been 
repeated with two different values of N and .M in order to check the accaracy, since 
there is an absence of reported results in the hter2ture. The agreement between the 
two eigenvalues is very good. 

The author is grateful lo the referees for valuable comments and suggestions. 
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